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Abstract. Approximate analytical formulae describing the energy variation of line intensities, autoioniza-
tion widths and lineshape asymmetries, are derived for a Phase-Shifted Multichannel Quantum Defect
Theory model composed of two closed interacting channels coupled to two effective continua. This is ac-
complished by putting the two compatibility equation solutions, for the common phase shifts of the two
open channels, in such a form so the resonant behavior is attributed to one of them, the other accounting
for an energy dependent background. Then, the well-known procedures for the simpler case where only one
continuum is considered are applied, using only the resonant solution. The method is quite general and
applicable to any MQDT model with two or more open channels. The resulting analytical formulae are
tested on experimental spectra of Sr, Ba and Cu and it is shown that they are valid as long as: i) The res-
onances are non-overlapping, ii) The direct closed channel coupling is much stronger than the indirect one
through the continua and (when excitation matrix elements are involved) iii) The open channels excitation
strength is smaller or at least comparable to the closed channels one.

PACS. 32.80.Dz Autoionization – 32.80.Rm Multiphoton ionization and excitation to highly excited states
(e.g., Rydberg states) – 32.80.Fb Photoionization of atoms and ions

1 Introduction

The Multichannel Quantum Defect Theory (MQDT) [1]
is a powerful tool for the analysis of atomic spectra. The
configuration interaction between Rydberg series (closed
channels) converging towards different ionization limits as
well as their coupling to the available continua (open chan-
nels) can be described in a unified and compact manner,
using a relatively small set of parameters. If the num-
ber of interacting channels is large these parameters are
provided by the R-matrix method [2], able to calculate
the channel interactions inside the ionic core seen by the
excited Rydberg electron. When however the number of
channels is small, the parameters may be fitted to the
experimental spectra. Restricting ourselves to this latter
case, widely used nowadays is the phase-shifted MQDT
[3,4] where we have to deal with two basic types of pa-
rameters which may be interpreted as channel couplings
and quantum defects of unperturbed channels. In many
cases the number of open channels is quite high but as
discussed by several authors [4–6] all the features of the
total cross-section (apart from a constant background)
may be reproduced by including only a reduced number
of effective continua. Using his complex reaction matrix
MQDT formalism, Lecomte [6] treated this concept in
more detail and established the rules to be followed for
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its application. The number of effective continua should
be equal to the number of closed channels and the first
closed channel should be coupled to the first continuum,
the second to two continua (including the first one) and
so on. Additionally, the continua may be considered un-
coupled. An MQDT model constructed under those rules
can be characterized as “complete” in order to be dis-
tinguished from a rigorous theory including all relevant
interacting channels. In practice many simplifications are
usually made, in order to keep the number of fitted pa-
rameters reasonable and to obtain semi- analytical MQDT
solutions. One model which can be solved analytically
consists of two interacting closed channels converging to-
wards different ionization limits and coupled to the same
continuum. Treated in detail in the past [4,7–10], this
model (called 3QDT hereafter) has been often used to fit
the so-called complex resonances [7,11,12] where a per-
turber is diluted in a large number of a perturbed se-
ries members. The spectral features of a complex reso-
nance are sometimes spectacular. The most well-known
effects are the reversed line asymmetry (q-reversal) [13]
and the inhibited autoionization (stabilization) [14] asso-
ciated with quasi-zero autoionization widths. The exten-
sive use of 3QDT, even in situations where it is clearly
not “complete”, is to a large extend due to its pedagog-
ical character. It provides fairly simple analytical expres-
sions for the energy dependence of the widths, line inten-
sities and Fano parameter q near a complex resonance,
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Fig. 1. Schematic diagram of the Phase-Shifted 4QDT model.
For the parameters shown see text.

offering this way insight into the mechanisms producing
the above mentioned phenomena. On the other hand,
although the conditions of validity of these expressions
have been previously discussed [7–10] they have not been
fully explored using specific examples from existing exper-
imental spectra. Even more, such analytical expressions do
not exist for models with more than one open channels.
The main purpose of this paper is to derive the corre-
sponding formulae for 4QDT i.e. for a “complete” model
consisting of two interacting closed channels converging
towards different ionization limits and coupled to two ef-
fective continua. Thus, the previous work on 3QDT [4–7]
is extended while preserving the same level of simplicity
and insight. This is accomplished by first effectively re-
ducing the problem to a single-open-channel one and then
applying the procedures already employed for 3QDT. It
is furthermore shown that the method can be generalized
for models with more complicated closed channel systems
and an arbitrary number of continua. Finally, the 4QDT
expressions are tested and their conditions of applicabil-
ity are examined using the preliminary experimental re-
sults on the [5pnp]J=0 spectrum of Sr [15], the [6pnd]J=3

spectrum of Ba [11] and the Cu 3d94s(1D2)nd2G9/2 series

interacting with the 3d94p2 4F9/2 perturber [16].

2 Two-open-channel MQDT and the 4QDT
model

2.1 Standard elements of MQDT

In the following, emphasis is given on models having two
continua while the system of closed channels is left un-
specified. However, many important details can be better
understood by using the specific example of the 4QDT
model to which our formal approximate expressions will
be finally applied. This is shown in Figure 1 and it is a
simplified version of the one presented in reference [16]
where all the possible couplings between open and closed
channels were included. Some of the couplings are elimi-
nated in the model of Figure 1. Nevertheless it is “com-
plete” in the sense given in the introduction. Provided
all relevant closed channels are considered, it is able to
reproduce all the features of the spectrum apart from a

constant background while all MQDT parameters are con-
stant or smooth functions of energy. It consists of two cou-
pled closed channels 1 and 2 converging to the different
ionization limits I1 and I2 (I2 > I1). It also includes two
uncoupled effective continua |o1〉 and |o2〉 (open channels
3 and 4 respectively). Channel 1 may autoionize only to
|o1〉 while channel 2 to both open channels. The basic ma-
trix MQDT equation to be solved is given by

[R′ + T]a = 0. (1)

The phase-shifted reaction matrix R′ has zero diagonal
elements while its off-diagonal ones account for the cou-
pling between all the channels. The elements of the diago-
nal matrix T are given by Ti = tan (πν′i) with ν′i = νi+µi.
The parameters µi may be interpreted as the zero-coupling
quantum defects of each channel i.e. when R′ = 0. The
a vector is related to the vector Z of the channel admix-
ture coefficients by ai = Zi cos(πν′i) . The compatibility
condition for (1) to have a non-trivial solution is

det[R′ + T] = 0. (2)

Let us, in a first step, ignore the open channels. Using the
well-known partitioning in four quadrants [1,4]

[R′ + T] =

[
[R′ + T]cc R′co

R′oc [R′ + T]oo

]
(3)

(the subscript “o” stands for open and “c” for closed) and
denoting by Dcc the determinant of (2) for this reduced
problem, the energy level positions are determined by sat-
isfying simultaneously the equation

Dcc ≡ det
[
[R′ + T]cc

]
= 0 (4)

and the relations

Ii −Ryd/ν
2
i = Ij −Ryd/ν

2
j , i 6= j (5)

between the effective quantum numbers defined with re-
spect to each ionization limit of the closed channel system
(Ryd is the mass corrected Rydberg constant). Then a fit-
ting of the predicted values to the experimental energy
levels determines the unperturbed quantum defects and
provides information for the coupling parameters between
the closed channels. For the 4QDT model the determined
parameters are µ1, µ2 and |R′12|. The quality of the fit
is assessed by inspection of graphical representations of
equation (4) (Lu-Fano curves [17]) in terms of plots of νi
versus νj .

Now, introducing in a second step the open channels,
the photoionization cross-section from an initial valence
(non-Rydberg) level |g〉 is written as

σ(E) ∝
no∑
ρ=1

[
N∑
i=1

a
(ρ)
i d′i

]2

(6)

where d′i is the dipole matrix element between |g〉 and
the channel |i〉 and N is the total number of chan-
nels. The index ρ in (6) runs over the number no of
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open channels (here no = 2) which is the number of
independent solutions of (1). For each solution we re-
quire a common phase shift δ(ρ) for the open channels
so tan(πν′o1

) = tan(πν′o2
) = tan(−δ(ρ)) ≡ ερ. The solution

of (2) provides ερ for ρ = 1, 2 and the coefficients a
(ρ)
i are

then determined by (1) and the normalization condition(
a

(ρ)
o1

)2

+
(
a

(ρ)
o2

)2

=
(
1 + ε2ρ

)−1
.

2.2 Formal derivation of approximate width,
line intensity and lineshape expressions

As long as an MQDT model is “complete” and includes all
relevant closed channels, (6) may reproduce the spectrum
irrespectively of its complexity. On the other hand, it is
not always possible, even for a small number of interacting
channels, to describe through semi-analytical formulae the
behavior of quantities such as widths and lineshapes in
the neighborhood of a complex resonance. In 3QDT this
became feasible only after assuming the validity of two
conditions:

(i) The resonances are non-overlapping. In other words
the widths of successive members of Rydberg series,
if considered unperturbed, are smaller than their sep-

aration. This implies that
(
R′ioj

)2

< 1 [3,6,18], where

R′ioj couples the closed channel |i〉 with the open chan-

nel |oj〉. In this case the resonant behavior is associ-

ated with the poles of tan(−δ(ρ)) i.e. with ερ →∞.
(ii) If, furthermore, the direct closed channel coupling is

stronger than the indirect one through the continua,
the resonances are located very close to the energy
level positions predicted by (4) [7]. Stated in another
way, to a very good approximation Dcc = 0 presumes
ερ →∞. Especially for the 3QDT and 4QDT models,
R′12 is responsible for the direct coupling while the
indirect is characterized by the product R′13R

′
23. A

quantitative criterion for the dominance of the former
could be the requirement that |R′12/R

′
13R

′
23| � 1.

The above conditions (i) and (ii) are a necessary ingre-
dient of the following analysis and they will be assumed
hereafter to be valid. One should note however that a defi-
nite answer concerning the validity of (i) can only be given
by a nearly ab initio R-matrix/MQDT treatment. Even
when (i) is invalid, a fitting procedure may lead to a set
of parameters fulfilling this condition.

For any model with two open channels, (2) reduces to
the quadratic equation

Dccε
2
ρ −Bερ + C = 0. (7)

It is, of course, trivial to solve (7). Using the standard
forms of the two solutions, it is easy to verify that reso-
nant behavior, ερ → ∞, is exhibited by both roots (since
both are proportional to D−1

cc ) but not simultaneously.
However, it would be desirable to somehow attribute this

behavior to only one of them. Indeed, this can be achieved
by writing the solutions in the form

εres =
A

Dcc
(8a)

and

εnr =
C

A
(8b)

where

A =
1

2
(B + Sign(B)

√
B2 − 4DccC). (8c)

Equations (8a–c) are known to be the most trouble-free
forms that the solutions of (7) can be put in for computa-
tional purposes [19]. Of interest here however, is the result-
ing unequal partitioning of the resonant features which are
now exhibited only by the root εres while the non-resonant
root εnr accounts just for an energy dependent continuum
structure. It is only for C|Dcc=0 → ∞ or B|Dcc=0 ≈ 0,
that εnr may show resonant behavior. These conditions
are not met, except may be accidentally as a result of an
oversimplification of the model (for example, by unrea-
sonably minimizing the number of fitted parameters) and
these poles do not correspond to true energy levels.

Adopting (8a–c) leads very easily to the derivation of
the width function Γ (E). We start from the general for-
mula [10,18]

Γ (E) = 4Ryd

[
∂δ

∂E

∣∣∣
E=Er

]−1

(9)

for an isolated resonance located at Er. The condition
E = Er is replaced now by (4) and setting εres = tan(−δ)
(while εnr is discarded) we arrive at

Γ (E) = 4Ryd

[
∂Dcc

∂E

∣∣∣
Dcc=0

]−1

B|Dcc=0. (10)

The σmax(E) function may be found by setting Dcc = 0
in (6)

σmax(E) = σ(E)|Dcc=0 = σresmax(E) + σnrmax(E). (11)

It turns out that σresmax(E) depends only on the matrix el-
ements describing excitation to the closed channels while
σnrmax(E) depends generally on all matrix elements. This
second non-resonant term is absent in 3QDT. However,
the corresponding 3QDT expression for σmax(E) [7], sim-
ilarly to σresmax(E), does not depend on the continuum
matrix element. An additional necessary condition, apart
from (i) and (ii), for the 3QDT σmax(E) function to be
meaningful, and which has not been pointed out previ-
ously, is that:

(iii) The continuum matrix elements are of weaker or at
least similar magnitude compared to the closed chan-
nel ones.
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To get a feeling about the significance of (iii), as-
sume that all the closed channel matrix elements are zero.
Then, σmax(E) for 3QDT and σresmax(E) in (11) are identi-
cally zero and the spectrum is dominated by window res-
onances. Consequently, these two functions describe the
profile of resonant excitation only, except when (iii) is
valid, in which case they describe the total cross-section
envelope and we may write

σmax(E) ≈ σresmax(E). (12)

The third quantity of interest for the analysis of the
spectra is the energy dependent Fano parameter q(E).
The procedure which is generally followed for its calcu-
lation is to first rearrange the cross-section in a form
suggestive of a Fano profile for an isolated resonance,
σ(E) = σb + σa(x + q)2/(x2 + 1), and then try to iden-
tify x and q. Several methods have been proposed to ac-
complish that [10,20,21]. Here, we adopt the method of
reference [10] leading to a simple and easily interpretable
formula for q(E). The energy variable x is defined at the
outset as x = 1/εres. The part of the total cross-section
corresponding to εnr may be identified in our case as an
energy-dependent background σb. Bringing the remain-
ing resonant part to the desired functional form results
in an energy-dependent σa and to a Fano parameter q
which rapidly oscillates with energy. To obtain a physi-
cally meaningful parameter, q is evaluated on the reso-
nance positions by again setting Dcc = 0.

2.3 Application to 4QDT

For the model of Figure 1 the functions Dcc, B and C are
given by

Dcc = T1T2 −R
′2
12 (13a)

B = T2R
′2
13 + T1

[
R′223 +R′224

]
− 2R′12R

′
13R

′
23 (13b)

C = R′213R
′2
24. (13c)

Inserting (13a–c) to (10) and (12) the Γ (E) function, as-
suming energy-independent parameters, is written as

Γ (E) =
4Ryd

π

R′212R
′2
24 + [R′12R

′
23 − T2R

′
13]2

ν3
1 [R′412 + T 2

2 ] + ν3
2 [1 + T 2

2 ]R′212

(14)

while the σmax(E) function is given by

σmax(E) ∝
[T2d

′
1 −R

′
12d
′
2]2

R′212R
′2
24 + [R′12R

′
23 − T2R

′
13]2
· (15)

It can be observed that the denominator of σmax(E) in
(15) is found in the numerator of Γ (E) in (14). This is a
common feature with 3QDT. In the latter case this fact
characterizes the stabilization effect (Γ = 0, σmax(E) →
∞), occurring when for a level position the equation
R′12R

′
23−T2R

′
13 = 0 is fulfilled. This exact stabilization is

avoided in 4QDT due to the existence of the coupling pa-
rameter R′24 representing an autoionization decay to the

second continuum, destroying in this way the interference
underlying the effect. Nevertheless, approximate stabiliza-
tion can occur if R′24 is small. Lecomte [6] arrived at the
same conclusions using a model similar to 4QDT. He also
presented an approximate formula which resembles (14)
in the limit ν1 � ν2.

Following the procedure outlined in the previous sub-
section we find that q(E) is given by

q(E) = −
T2d
′
1 −R

′
12d
′
2

R′12R
′
24d
′
4 + (R′12R

′
23 − T2R

′
13)d′3

(16)

which predicts two q-reversals. The first one is located at
T2 = R′12d

′
2/d
′
1 where q(E) passes smoothly from zero.

At exactly this same location (15) becomes zero implying
a vanishing resonant excitation and confirming the above
made comments about σmax(E). The second q-reversal
occurs when the denominator of (16) becomes zero and
q(E) has a pole. Wang and Greene [21] pointed out that
there may be more than one poles of q(E) which (16)
does not predict. A more rigorous treatment would require
the application of their method which is however of little
inspectional usefulness since it does not lead to simple
analytical results.

2.4 4QDT expressions applicable to isolated core
excitation

It is worth mentioning another approach for the calcula-
tion of an energy-dependent asymmetry parameter. For
3QDT, Cooke and Cromer [4] rearranged only the admix-
ture coefficient Z2

2 assuming excitation of channel 2 (the
perturbers) alone through the Isolated Core Excitation
(ICE) method [22]. The latter has been used mainly in
Alkaline Earth atoms having two valence electrons and in
this case the initial state |g〉 is a Rydberg one. The absorp-
tion spectrum is much simpler, its main feature being the
suppression of continuum excitation. As a consequence,
in ICE (16) is meaningless. For the sake of completeness
we provide the set of 4QDT formulae appropriate for the
ICE method. The cross-section considering excitation of
channel 2 only is written as

σICE(E) ∝ ν3
2O

2(n∗, ν2)
[
(Zres2 )2 + (Znr2 )2

]
(17)

where O(n∗, ν2) = 2(n∗ν2)1/2[π(n∗2 − ν2
2)]−1 sin[π(n∗ −

ν2)], is the overlap integral between the initial and fi-
nal state of the Rydberg electron [22] (n∗ is the effective
quantum number of the initial Rydberg state). Since ICE
probes only the closed channel 2 character of the final
wavefunction, while the continuum is not excited, it is an
excellent approximation to assume that (Zres2 )2 � (Znr2 )2.
The spectral characteristics are determined almost solely
from (Zres2 )2 which can be put in the form

(Zres2 )2 =
[R′223 +R′224](1 + T 2

2 )

T 2
2 + [R′223 +R′224]2

(
T1 − s+ γqICE

)2

(T1 − s)2 + γ2
·

(18)
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The first factor in (18) corresponds to the quasi-symmetric
profile of the character of channel 2 in the absence of any
coupling. This profile is modulated by the second fac-
tor containing the functions γ, s and qICE , interpreted
as shift, width and asymmetry parameter respectively of
the perturbed series resulting from the coupling with the
perturber. They are given by

γ(E) =
R′212R

′2
24 + [R′12R

′
23 − T2R

′
13]2

T 2
2 + [R′223 +R′224]2

(19)

s(E) =

T2

[
R′212 −R

′2
13[R′223 +R′224]

]
+ 2R′12R

′
13R

′
23[R′223 +R′224]

T 2
2 + [R′223 +R′224]2

(20)

qICE(E) = −
1

γ(E)

{
− s(E)

+
R′212

T2

[
1−

(
R′212R

′2
24 + [R′12R

′
23 − T2R

′
13]2

R′212[R′223 +R′224]

)1/2 ]}
.

(21)

The formulae (19, 20, 21) probe internal atomic interfer-
ences irrespectively of the excitation process [6,14]. There-
fore, and as is the case also for (14), they do not depend
on the validity of (iii). However, γ(E) and s(E) must be
regarded as qualitative quantities rather than true widths
and shifts. Especially for the resonant widths, it is (14)
which should be used to fit the experimental data, not
(19). The function qICE(E) on the other hand, is the
asymmetry parameter appropriate for the ICE method
while (16) is appropriate when excitation takes place from
a valence state.

The expressions (14, 15, 16) as well as (19, 20, 21)
are the extensions of the corresponding ones for 3QDT to
which they reduce for R′24 = 0 and d′4 = 0.

3 Generalization to arbitrary number of open
channels

For a model having no open channels the compatibility
equation (2) acquires the following polynomial form:

Dccε
no −Bεno−1 + · · · = 0. (22)

By applying the ideas presented in Section 2.2 to suc-
cessive pairs of roots of (22), the resonant behavior can
always be attributed to only one root. This root is given
by an expression identical to (8a). The function A is very
complicated but it needs to be calculated only on the res-
onant positions satisfying (4), in which case it turns out
that A|Dcc=0 = B|Dcc=0. Finally, the function B, which
is given by the sum of the no roots of (22) multiplied by
Dcc, is expressed as

B = DccTr[R′oc[R′ + T]−1
cc R′co] (23)

(note the independence of B on R′oo expressing the cou-
pling between open channels). All the formal expressions
discussed so far may be used with the substitution of the
appropriate Dcc and B functions. Especially for the reso-
nant widths and provided that (i) and (ii) are valid, the
above Multichannel generalization could be applied, in a
way complimentary to (or, better, in conjunction with) the
R-matrix/MQDT method, for their theoretical prediction.

4 Applications of 4QDT expressions

4.1 The 4d5p1P1 →[5pnp]J=0 spectrum of Sr

The even J = 0 structure below the Sr 5p1/2 threshold con-
sists of two interacting closed channels ([5p1/2np1/2]J=0

(channel 1) and [5p3/2np3/2]J=0 (channel 2)) and three
open ones so it is a typical situation where 4QDT can be
applied without any loss of information. The spectroscopy
and analysis for that spectrum are only preliminary [15]. A
detailed presentation is to be given in a forthcoming paper.
Part of the experimental spectrum together with the fitted
one using 4QDT, around the [5p3/213p3/2]J=0 perturber is
shown in Figure 2a. In reference [15] the parameters µ1, µ2

and |R′12| were fitted on energy level positions while for
the cross-section 3QDT was employed. The appearance
of stabilization was avoided by convoluting the spectrum
with the laser linewidth (as in Ref. [7]) while saturation ef-
fects were also taken into account, implying a small power
broadening. Consequently, these data are not very reli-
able for fitting resonant widths. The accuracy of the ob-
tained parameters is not very high although it is sufficient
for testing the 4QDT formulae derived in Section 2. The
applicability condition (ii) is valid (|R′12/R

′
13R

′
23| ≈ 24)

and so does (iii) at least in the neighborhood of the per-
turbers. The two closed channels autoionize primarily to
different effective continua and therefore any interference
effect leading to stabilization is absent. The σmax(E) func-
tion, shown in Figure 2b, envelopes perfectly the resonant
maxima over the whole range of the perturber. However,
near the zero minimum of σmax(E), occurring outside the
perturber, the cross-section is very weak but non-zero (see
the inset of Fig. 2b). At this energy range the admixture
coefficient of the perturbed series dominates. Hence, the
failure of (15) in this range is to be attributed partly to
(the ignored) σnrmax(E) function and partly to the compa-
rable excitation strength between channel 1 and the con-
tinua ((iii) is close to its limit of validity). Despite that,
q(E) in (16) (plotted in Fig. 2c) passes smoothly from zero
and correctly predicts the occurrence of a q-reversal when
σmax(E) = 0. It is more difficult to identify the second q-
reversal because near the pole of q(E) the resonances are
symmetric and the reversed asymmetry becomes appar-
ent rather far from that point. In practice, locating the
q-reversals provides (together with the use of σmax(E))
most of the fitted parameters or combinations of them
before making any attempt to fit the total cross-section.
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Fig. 2. (a) The Sr 5s2 1S0—ω1 → 4d5p 1P1—ω2 → [5pn`]J=0,2

spectrum (solid line) and fitted J = 0 4QDT spectrum
(dashed line), around the [5p3/213p3/2]J=0 perturber with par-
allel ω1 and ω2 polarizations [15]. The J = 0 resonances
(marked with “0”) have been identified through a compar-
ison with spectra recorded with perpendicular polarizations
([5pn`]J=1,2). (b) The synthetic J = 0 total cross-section
alone (Eq. (6), full line curve) and σmax(E) function (Eq.
(15), dashed line curve). Parameters of the preliminary fit
based only on the spectrum around the [5p3/213p3/2]J=0 per-
turber: Ryd = 109 736.63 cm−1, I1 = 69 647.28 cm−1, I2 =
70 448.74 cm−1, µ1 = 0.79, µ2 = 0.42, R′12 = 0.64, R′13 =
−0.35, R′23 = 0.1, R′24 = 0.43, d′1/d

′
2 = −0.1, d′3/d

′
2 = 0.1 and

d′4/d
′
2 = −0.02. The inset shows in an expanded scale the zero

minimum region of σmax(E). (c) The q(E) function (Eq. (16)).
Vertical dashed lines mark the locations of the two q-reversals.
The energy scales refer to the Sr ground state.

4.2 The 6snd 1D2 → [6pnd]J=3 spectrum of Ba

Using the ICE technique, excitation from the 6snd1D2

bound Rydberg states of Ba revealed two interacting au-
toionizing series below the 6p1/2 threshold [11]. These are
the [6p1/2nd5/2]J=3 (channel 1) and the [6p3/2nd

+]J=3

(channel 2) where nd+ denotes the linear combina-

tion
√

2/5nd3/2 +
√

3/5nd5/2 [12]. Another series, the
[6p3/2nd

−]J=3, does not significantly interact with the

other two and is not efficiently excited from the 6snd1D2

states. Thus, 4QDT is appropriate for the analysis of
this spectrum. The spectral profiles were fitted using one
and two open channels models [11] within the eigenchan-

nel MQDT formulation [17], the Phase-Shifted 3QDT [7]
and a six channel Phase-Shifted QDT including all the
[6pnd]J=3 series and three continua [12]. The 3QDT model
reproduced many of the spectral characteristics but it
predicted the appearance of stabilization which is ab-
sent in the experimental data. The six channel Phase-
Shifted QDT fit was quite satisfactory. Nevertheless, the
remarkable variation of the widths of the [6p1/2nd]J=3 res-
onances, observed near the [6p3/2nd

+]J=3 perturbers was
basically analyzed qualitatively. It is especially this varia-
tion that we would like to reproduce by fitting the exper-
imental data using (14).

In a step by step procedure, |R′12| , µ1 and µ2 are first
determined by an analysis of energy level positions [7,11].
The remaining parametersR′13, R

′
23 (|R′12/R

′
13R

′
23| ≈ 13)

and R′24 as well as the relative sign of all the coupling pa-
rameters are then determined by a fit on the resonant
widths, using (14). The function Γ (E) is shown in Fig-
ure 3a. It is nicely reproducing the behavior of the ex-
perimental widths even far from the perturbers where the
3QDT curve [7] (see Fig. 3a), obviously fails. The rea-
son for this disagreement is that the two closed chan-
nels autoionize primarily to different continua, support-
ing the simplifying assumption made in the six channel
fit that each closed channel is coupled to a single contin-
uum [12]. The points marked with white boxes correspond
to the resonances at 61 171.7 cm−1 and 61 901.0 cm−1,
assigned to the [6p3/29d+]J=3 and [6p3/210d+]J=3 states
respectively [11]. Experimental widths were not provided
for those lines because they completely disagree (much
smaller) with those expected on the basis of unperturbed
Rydberg series. These levels are strongly mixed with the
perturber which extends over a much broader energy
range. The experimental ICE cross-section around the
[6p3/210d+]J=3 perturber (Fig. 3b) is satisfactorily repro-
duced in Figure 3c despite the fact that it is not fitted
directly. All the parameters are determined by fitting en-
ergy level positions and widths separately. The non-zero
background between successive resonances results from
the specific relative signs among the coupling parameters
upon which the width variation depends critically. This
demonstrates the usefulness of (14) in the analysis of com-
plex resonances since the widths are very sensitive probes
of channels interactions. Finally, qICE(E) in Figure 3d re-
veals a q-reversal which indeed shows up in the spectrum.

4.3 The 3d94s(1D2) nd 2G9/2 ↔ 3d94p2 4F9/2

interaction in Cu: applicability investigation

Below the Cu II 3d94s(3,1D) thresholds, the interaction
between the 3d94s(1D2)nd 2G9/2 series (channel 1) with

the 3d94p2 4F9/2 state (belonging to channel 2), excited

from the metastable 3d94s4p 4F9/2 states, results in a par-
ticularly complex spectrum. The latter is shown in Fig-
ure 4a together with a fit using a Phase-Shifted MQDT
model composed of two closed and two open channels [16].
All the possible coupling parameters were initially in-
cluded. Based on a complementary Hartree-Fock (HF)
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Fig. 3. ICE 6snd 1D2 → [6pnd]J=3 spectrum of Ba. Param-
eters of the fit: Ryd = 109 736.87 cm−1, I1 = 62 296.49 cm−1,
I2 = 63 987.35 cm−1, µ1 = 0.80, µ2 = 0.75, R′12 = 0.26,
R′13 = 0.29, R′23 = 0.07 and R′24 = 0.29. (a) The functions
Γ (E) for 4QDT (full line, Eq. (14)) and 3QDT [7] (dashed
line), versus the effective quantum number ν2. The functions
are convoluted to the 1 cm−1 laser linewidth. Black points
denote the experimental data of reference [11]. For the white
boxes see text. (b) Experimental 6s10d 1D2 → [6p3/210d+]J=3

spectrum (full line) and six channel QDT fit (dotted line) [12].
The line marked with “A” is a parasitic one, masking the
“[6p1/220d]J=3” resonance. (c) Synthetic ICE cross-section us-

ing the above 4QDT parameters. (d) The qICE(E) function,
equation (21). The predicted q-reversal is shown with the
dashed vertical line. The energy scale refers to the Ba ground
state.

analysis, many of them were subsequently set equal to
zero. In Figure 4b is shown the spectrum fitted using the
4QDT model of Figure 1. Because some non-zero cou-
plings of the model of reference [16] are not included in
4QDT and because the two synthetic spectra are not com-
pletely identical, a somewhat different set of parameters
emerged. As expected, however, the important conclusions
of the present analysis agree with those in [16]. Most strik-
ing is the fact that the closed channels interact essen-
tially through the continua (|R′12/R

′
13R

′
23| ≈ 0.075), their

Fig. 4. (a) Experimental 3d94s4p 4F9/2 →
3d94s(1D2)nd 2G9/2 + 3d94p2 4F9/2 spectrum of Cu
(points) and fitted MQDT profile (solid line) [16].
(b) The present 4QDT fit with the following param-
eters: Ryd = 109 736.37 cm−1, I1 = 88 581.0 cm−1,
I2 = 128 735.9 cm−1, µ1 = 0.896, µ2 = 0.354, R′12 = 0.001,
R′13 = −0.5, R′23 = 0.03, R′24 = 0.017, d′1/d

′
2 = 0.01,

d′3/d
′
2 = 0.01, d′4/d

′
2 = 0.01. Dashed line curves denote the

σmax(E) function, equation (15). (c) Same as in (b) but with
R′12 = 0.03. (d) Same as in (b) but with R′12 = 0.09. (e)
and (f) same as in (d) but with d′3/d

′
2 = d′4/d

′
2 = 1 and 10

respectively. The energy scale refers to the the Cu ground
state.

direct interaction being negligible. As a consequence con-
dition (ii) is invalid (while (iii) still holds) and σmax(E),
Γ (E) and q(E) should not describe the observed spec-
trum. This is illustrated in Figure 4b where σmax(E) fails
to envelope properly the cross-section. Thus, this spec-
trum may serve as the starting point of an investigation
leading to quantitative applicability limits for the expres-
sions derived in Section 2. First, the direct closed channel
coupling R′12 is gradually increased until σmax(E) prop-
erly predicts the line intensities. Characteristic examples
are shown in Figure 4c (for |R′12/R

′
13R

′
23| = 2) and in

Figure 4d (for |R′12/R
′
13R

′
23| = 6). In the former case a

considerable improvement can be observed while the lat-
ter represents the lowest value for which the description of
the line intensities is excellent. Therefore, for the 4QDT
case, an empirical rule for condition (ii) to be fulfilled is

|R′12/R
′
13R

′
23| ≥ 6. (24)

Similar rules may be constructed for more complex mod-
els. It is emphasized that if (24) is not fulfilled the envelope
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will not be predicted even if the approximation (12) is not
applied and (11) is used instead.

In Figure 4c the ratios |d′2/d
′
3,4| = 100 validate (iii)

close to the perturber. However, even far from the latter,
σmax(E) does predict correctly the line maxima, despite
the fact that |d′1/d

′
3,4| = 1. Its behavior is examined by

increasing the matrix elements d′3,4 (see the examples in
Figs. 4e–f). The emerging applicability limit for (15) and
(16) appears to be

|d′2/d
′
3,4| ≥ 1. (25)

Rather surprisingly, for |d′2/d
′
3,4| < 1 σmax(E) proves to be

inapplicable even by using (11) instead of (12) (including
the contribution of εnr). Hence, it is a posteriori revealed
that even for (11) to be meaningful, (iii) must be valid. In
that case however, (12) is a very good approximation and
much simpler.

5 Summary and conclusion

A method for obtaining approximate formulae for the
energy dependence of spectral line intensities, asym-
metries and autoionization widths, for MQDT models
with two effective open channels, was presented. It
relies in attributing the resonant behavior to only one
of the solutions of the compatibility equation, related
to the common phase shifts of the two open channels.
The aforementioned quantities are then calculated using
only this resonant solution and by applying the well-
known procedures as for the simpler single-continuum
problem. Irrespectively of the number of open channels,
the latter procedures are applicable only when rather
restrictive conditions are fulfilled. Those conditions of
applicability, discussed so far only fragmentarily in the
literature, were presented here in detail. The method
provides analytical expressions for a model consisting
of two interacting closed channels converging towards
different ionization limits and coupled to two effective
continua. These analytical formulae, representing the
extensions of those previously derived for the corre-
sponding model with one open channel, were tested on
experimental spectra of Sr, Ba and Cu. Furthermore, it
was shown that a generalization of the method for an
arbitrary number of continua is possible. However, for a
large number of interacting channels analytical expres-
sions are difficult to find and the usefulness of parametric

MQDT models is rather limited. In this case the derived
formal, many-open-channel expressions may be used com-
plementarily and in conjunction with R-matrix/MQDT
treatments.

The author is grateful to P. Camus, M. Aymar, J. M. Lecomte
and A. Lyras for reading the manuscript and for their valuable
suggestions and comments.

References

1. M.J. Seaton, Rep. Prog. Phys. 46, 167 (1983).
2. M. Aymar, C.H. Greene, E. Luc-Koening, Rev. Mod. Phys.

68, 1015 (1996) and references therein.
3. A. Giusti-Suzor, U. Fano, J. Phys. B 17, 215 (1984).
4. W.E. Cooke, C.L. Cromer, Phys. Rev. A 32, 2725 (1985).
5. U. Fano, Phys. Rev. A 124, 1866 (1961).
6. J.M. Lecomte, J. Phys. B 20, 3645 (1987).
7. A. Gusti-Suzor, H. Lefebvre-Brion, Phys. Rev. A 30, 3057

(1984).
8. H. Friedrich, D. Wintgen, Phys. Rev. A 32, 3231 (1985).
9. H. Friedrich, D. Wintgen, Phys. Rev. A 31, 3964 (1985).

10. D. Wintgen, H. Friedrich, Phys. Rev. A 35, 1628 (1987).
11. F. Gounand, T.F. Gallagher, W. Sandner, K.A. Safinya,

R. Kachru, Phys. Rev. A 27, 1925 (1983).
12. O.C. Mullins, Y. Zhu, E.Y. Xu, T.F. Gallagher, Phys. Rev.

A 32, 2234 (1985).
13. J.P. Connerade, A.M. Lane, M.A. Baig, J. Phys. B 18,

3507 (1985).
14. H. Hieronymus, J. Neukammer, H. Rinneberg, J. Phys. B

25, 3463 (1992).
15. M. Kompitsas, in Proceedings of the 7th International

School on Quantum Electronics/Lasers-Physics and Ap-
plications, Sofia, Bulgaria 1992, edited by P.A. Atanasov
(Institute of Electronics, Bulgarian Academy of Sciences,
1992), p. 113.

16. M. Martins, P. Zimmermann, Z. Phys. D 27, 115 (1993).
17. K.T. Lu, U. Fano, Phys. Rev. A 2, 81 (1970); U. Fano,

Phys. Rev. A 2, 353 (1970); C.M. Lee, K.T. Lu, Phys.
Rev. A 8, 1241 (1973).

18. H. Friedrich, Theoretical Atomic Physics (Springer, New
York, 1990), p. 154.

19. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P.
Flannery, Numerical Recipes, 2nd edn. (Cambridge Uni-
versity Press, Cambridge, 1992).

20. K. Ueda, Phys. Rev. A 35, 2484 (1987).
21. Q. Wang, C.H. Greene, Phys. Rev. A 44, 1874 (1991).
22. S.A. Bhatti, C.L. Cromer, W.E. Cooke, Phys. Rev. A 24,

161 (1981).


